Multiscale Modelling of
Mountain, Forest and
Prairie Hydrology

John Pomeroy, Kevin Shook, Xing Fang, Tom Brown

Centre for Hydrology,
Univ. of Saskatchewan,

Saskatoon & Kananaskis (Coldwater Laboratory)

www.usask.ca/hydrology



http://www.usask.ca/hydrology

Cold Regions Hydrological Cycle

Snowfall ..

’ Subljmation
_ Evapo-
I oWing/Snow gy anoration Rainfall  transpiration
ce

Sublimation
) [ ‘ \[




Why Physically-based Hydrological
Modelling?

® Robust - can be more confidently extrapolated to different
climates and environments and performs better in extreme
situations (floods, droughts).

e Scientifically Satisfying - represents a compilation of what is
understood about hydrology.

e Flexible — permits assessment of land use and climate change
impacts on streamflow regime, soil moisture, wetlands,
snowpack, groundwater, chemistry, etc.

e Can interface with chemistry and ecology - aquatic chemistry
and hydroecological modelling require a sound hydrophysical
base.

e Elevates hydrological practice to hydrological

science.



Information Needs to Design Models

e |dentification of the principles governing the primary
physical processes responsible for most water movement
in basin (processes).

® Governs model structure

e Fundamental boundary and initial conditions that affect
these processes (parameters).

® Governs model parameterisation

® Length scales for self-similarity and variability associated
with the properties affecting these processes (scale).

e Governs model spatial discretization.



Observations Clustered in Small
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Appropriate Hydrological Modelling

® Model structural complexity needs to be appropriate
for primary governing processes, parameter &
meteorological data availability.

e Detailed parameter information is normally limited
outside of research basins

® Basin discretization using hydrological response length
scales found to be very useful

® Accurate interpolation of meteorological variables is
critical.

® Structure, parameters and scale are informed by the
results of process studies and distributed modelling at
a network of research basins.



Cold Regions Hydrological Model
Platform: CRHM

e Modular — purpose built from C++ modules
e Parameters set by knowledge rather than optimization

e Hydrological Response Unit (HRU) basis
e |andscape unit with characteristic hydrological processes/response
® single parameter set
® horizontal interaction along flow cascade matrix
e Model tracks state variables and flows for HRU

e Coupled energy and mass balance, physically based algorithms applied to
HRUs via module selection

HRUs connected aerodynamically for blowing snow and via dynamic
drainage networks for streamflow

Flexible - can be configured for prairie, mountain, boreal, arctic basins
Sub-basins connected via Muskingum routing

Visualisation tools, GIS interface

Model failure is embraced and instructive

Pomeroy et al., 2007 Hydrol. Proc. Tom Brown, CRHM Modeller



Hydrological Response Units (HRU)

e A HRU is a spatial unit in the basin
described by a single set of
parameters, defined by

e biophysical structure - soils,
vegetation, drainage, slope,
elevation, area (determine from
GIS, maps)

e hydrological state — snow water
equivalent, internal energy, soil
moisture, depressional storage,
lake storage, water table (track
using model)

e hydrological flux - snow
transport, sublimation,
evaporation, melt discharge,
infiltration, drainage, runoff.
Fluxes are determined using
fluxes from adjacent HRU and so
depend on location in a flow
sequence.




Prairie Hydrological Connectivity

The fill and spill” hypothesis

-
-

Lack of groundwater connections in this
landscape — heavy tills



Impact of Fill and Spill on Hydrological
Response to Precipitation

Vermilion River at Bruce, 2007
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Fill and Spill Leads to
Variable Contributing Area

Conceptual View — Dean Shaw Real Wetlands,
Vermilion River Basin
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Potential Non-contributing Areas to

Streamflow due to Storage of Internally
Drained Runoff
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Depressional Storage —
Basin Contributing Area Relationship

Addition of water
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Objective

® Develop a model that can demonstrate the
role of surface water storage on the hydrology
of Prairie river basins.

e Apply the model to simulate streamflow.

e Modify the representation of wetlands in the
model to show the impact of restoration and
drainage on basin hydrology.




Vermilion River Basin
Current Wetland and Drainage Network
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Vermilion River Basin
Non-contributing Area
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Vermilion River Basin
Climate and Hydrometric Stations
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Model Setup

e Cold Regions Hydrological Modelling Platform (CRHM)
e Modules selected to describe hydrological processes

operating in the basin.
® Snow accumulation and melt
e Wetland storage, drainage
® Soil moisture storage, evapotranspiration and runoff
® Stream routing
Sub-basins broken into “hydrological response units”

HRU corresponding to land use, drainage and soil
Zones.

Sub-basins aggregated via routing module to describe
total basin behaviour



Prairie Module Structure
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Dynamic Modelling of Wetlands
Needed for Accurate Simulations

(a) Seasonal Discharge of Vermilion River Tributary near Seasonal Discharge of Vermilion River Tributary at
Bruce (05EE006) 0 1 Vegreville (05EE009)
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Sensitivity Analysis

e Modelled sub-basins 6, 8, 13, 14, 15, 16, 17
® Years 2005-2009 with earlier spin-up years

e Wetland Restoration — all wetlands restored to
1949 levels
e Spatial Wetland Restoration — upper vs lower basin
e Wetland Size Restoration — large vs small

e Wetland Drainage — all wetlands drained
e Spatial Wetland Drainage — upper vs lower
e Wetland Size Drainage — large vs small

e Note relatively small area of wetlands (6%) and
little apparent drainage since 1949 (then 7.4%)



Upper vs Lower Sub-Basin Location
Wetland Restoration
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Large vs Small Size Wetland Restoration

Restoring larger size of 46 wetlands
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Upper vs Lower Sub-basin Location
Wetland Drainage
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Larger vs Smaller Wetland Drainage
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Vermilion River Basin Wetland
Modelling Findings

e Hysteresis affects the relationship between
wetland water storage and contributing area,
requiring explicit modelling of wetland dynamics
in Prairie hydrology.

e Wetland restoration in the lower part of the sub-
basins and for larger wetlands is most effective in
reducing streamflows.

e Wetland drainage in the lower sub-basin and for
larger wetlands is most effective in increasing
streamflows.
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How to Determine HRU for Mountain
Snow Redistribution?

Windspeed (m/s)

0. 75150, 300, 4507~600
‘_.iil,".}'t, -w- o w— Meters

3D Reynolds averaged Navier-Stokes
equations used for wind flow
modelling over Marmot Creek
topography (WindSim)

LIDAR derived snow depth:
subtraction of summer elevations from
late winter elevations provides alpine

snow depth



April 1

How to Determine HRU

for Snow Melt?

Daily potential solar radiation
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Shadow Migration Over a Day In Early Feb
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Net Radiation to Forests:
Slope Effects
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Forest Snow Regime on Slopes
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CRHM Mountain Structure
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Mountain Hillslope Hydrology
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HRU Delineation

e Driving meteorology:
temperature, humidity,
wind speed, snowfall,
rainfall, radiation

“Intersect” ) BIOWlng SﬂOW,
intercepted snow

e Snowmelt and
evapotranspiration

e Infiltration &
Forest groundwater

Covers

® Stream network




Model Structure

Physically based hydrological modules

RB 1: Cabin Creek Sub-basin
HRUs:
*South-facing Alpine Rock
*North-facing Alpine Rock
*North-facing Alpine Larch/Spruce
*South-facing Alpine Larch/Spruce
*North-facing Spruce/Fir/Lodgepole Pine
*South-facing Spruce/Fir/Lodgepole Pine
*Level Spruce/Fir/Lodgepole Pine
*Forest Clearings
*Level Lodgepole Pine
*South-facing Lodgepole Pine
*North-facing Lodgepole Pine

HRU:
*Valley
Bottom

RB 2: Middle Creek Sub-basin
HRUs:
*North-facing Alpine Rock
*South-facing Alpine Rock
*South-facing Alpine Larch/Spruce
*North-facing Alpine Larch/Spruce
*North-facing Spruce/Fir/Lodgepole Pine
*South-facing Spruce/Fir/Lodgepole Pine

HRU:
*Valley
Bottom

RB 3: Twin Creek Sub-basin
HRUs:
*North-facing Alpine Rock
*South-facing Alpine Rock
*South-facing Alpine Larch/Spruce
*North-facing Alpine Larch/Spruce
*North-facing Spruce/Fir/Lodgepole Pine
*South-facing Spruce/Fir/Lodgepole Pine
*North-facing circular clearings
*South-facing circular clearings

Cabin Creek

Middle Creek

.> ________

Twin Creek
.’.

l

RB 4: Marmot Confluence
Sub-basin

HRUs:

*Forest Clearings

*North-facing Lodgepole Pine/Aspen
*South-facing Lodgepole Pine/Aspen
*Level Lodgepole Pine/Aspen
*South-facing Lodgepole Pine
*Level Lodgepole Pine

*North-facing Lodgepole Pine

v

HRU:
*Valley Bottom

v
Marmot Creek

v
Marmot Creek Basin Outlet




Forest Snow Dynamics Simulations
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Application: Forest
Climate Char

® Progressive canopy removal ¢

Cover &
ge

ue to

® Pine beetle removal of lodgepole pine canopy

® Burning of all canopy, with and
logging

without salvage

® Selective harvesting of canopy on north and south
facing slopes, with and without 1.5 m trunk

retention after harvesting

e Climate change: sensitivity analysis to rising

alr temperatures
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Forest Cover Disturbance
Impact on Peak Streamflow
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temperature increase (°C)

Impact of Winter Warming on Date
of Snowpack Depletion
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Cubic Metres

Change in Alpine Basin Discharge
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Application: Operational
Forecasting of Ungauged Flows

® Smoky River Basin is 46% ungauged

e Need to simulate spring streamflow from the
ungauged basin area (23,769 km?) in order to
forecast Smoky River contribution to the
Peace River

® Run model on a daily basis during flood forecast
period — update ungauged flows

® Use daily updates of meteorological model
forecast data to run for the future

® Route ungauged with gauged flows for forecast



Smoky River Basin: 51,839 km?
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Challenge:
Reliable Meteorological
Observations and Forecasts
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Interpolate and Predict
GEM-WISKI-CRHM

Model for creating .obs files for CRHM Smoky River Model
. Forecast

Measured j.‘: AW ';“I""- I =) / . Env Canada
AESRD Server GEM Model Output

or Workstation

CreateCRHMobs.cmd

v

get_scenario_AT_forecast.sh
get_scenario_PR_forecast.sh
get_scenario_RH_forecast.sh
get_scenario_U_forecast.sh
get_scenario_V_forecast.sh

CRHM_output @
Met Station Sites

Site iqe Eagles 945 tsf files of MSC webserve

. i3 2 & el
Site 3 YQU (Grande Site 4 Hendrickson Creek p,t, rh, U,V




DEM and Derived Stream Network

Smoky River Basin
DEM

Elevation (m)

High - 3310.36

Smoky River Basin
Stream Network and Non-contributing Area
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Land Cover and Soills

Smoky River Basin
Landcover
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Sub-basins
for Modelling

Modelled all ungauged and
gauged basins without real time
hydrometric stations

Sub-basins grouped into “types”
based on ecoregion

Real time gauged basins are
estimated from gauge
measurements and routed
outside of CRHM using SSARR

Smoky River Basin
Modelled Sub-basins
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Module Structure within each HRU
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HRU Classification of Smoky Basin
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Routing between HRUSsS

Routing between HRUs within Mountain Sub-basins

Routing between HRUs within Boreal Forest Sub-basins
_I Rock South-facing |—>| Alpine Tundra South-facing |— _I Exposed Land and Developed | | Exposed Land and [ eveloped |—

'—| Rock Morth-facing I—*| Alpine Tundra North-facing }— —I Regenerated Forest Clear-cut | I Grassland |

Rock Alpine Tundra
| E ast-West-facing E astWest-facing —{ Coniferous Forest | | Regenerated Forest Clear-cut |———
| Open Water
—| Deciduous Forest | | Coniferous Forest |

Small Channel
- | Mixed wood Forest | | Deciduous Forest I

M ain River Valle l—-‘v outlet
Open Water | Miced wood Forest | | y
| Small Channel | Main River Valley —— outlet

-
Routing between HRUs within Boreal Forest/Agriculture Transition Sub-basins Routing between HRUs within Agriculture Sub-basins

| Exposed Land and Developed ——— [ Exposed Land and Developed ———
| Grazsland Grasslandlf

| Cropland (ClayiC lay Loam/Loam/Sitt) |

Wetland
| cropland (Clay/Clay Loam/Loam/Sit)
Open VWater
| Regenerated Forest Clear-cut |7 el

| O pen Water

| Coniferous Forest |
Fen Small Channel Small Channel

| Deciduous Forest I

| Coniferous Forest :

— - l
. I W ain Rll.f&r‘n.u‘ﬂlleyl—l‘ outlet Mixed wood Forest | Main River Valley
| Dedduous Forest |

outlet

Mixed wood Forest |

Routing sequence depends on sub-basin type (ecoregion)




Routing between Sub-basins

Muskingum Routing used for river routing between sub-basins
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Basin Scale Local Inflow Evaluation

Little Smoky River near Guy
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Daily Discharge (m?/s)

-Simulated local flows are only from CRHM hydrographs.
-Estimated local flows are gauged hydrographs minus routed upstream gauged
hydrographs.



Basin-scale Prediction Evaluation

Little Smoky River near Guy
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Predicted flows, Nash-Sutcliff Statistic: 0.41 (Little Smoky) and 0.87 (Smoky)




Predicted Spring Discharge

(a)
N Little Smoky River Spring Discharge near Guy
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Predicted Spring Peak Discharge

Little Smoky River Spring Discharge near Guy

® Gauged Flow

= CRHM + Routed Upstream Gauged Flow
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Conclusions

® Better understanding of processes by intensive field
study and detailed distributed modelling in research
basins can be the basis for more realistic models and
confident parameterisation.

e Using the results and understanding from research
basins It is possible to simulate multiple hydrological
states and fluxes in Alberta’s mountains and prairies
without extensive calibration from streamflow
observations.

® These models can be used to reliably show the
sensitivity of Alberta’s river basins to climate change,
drainage and land use change and provide new
insights because of their strong physical basis.



